33 research outputs found

    Building Secure and Anonymous Communication Channel: Formal Model and its Prototype Implementation

    Full text link
    Various techniques need to be combined to realize anonymously authenticated communication. Cryptographic tools enable anonymous user authentication while anonymous communication protocols hide users' IP addresses from service providers. One simple approach for realizing anonymously authenticated communication is their simple combination, but this gives rise to another issue; how to build a secure channel. The current public key infrastructure cannot be used since the user's public key identifies the user. To cope with this issue, we propose a protocol that uses identity-based encryption for packet encryption without sacrificing anonymity, and group signature for anonymous user authentication. Communications in the protocol take place through proxy entities that conceal users' IP addresses from service providers. The underlying group signature is customized to meet our objective and improve its efficiency. We also introduce a proof-of-concept implementation to demonstrate the protocol's feasibility. We compare its performance to SSL communication and demonstrate its practicality, and conclude that the protocol realizes secure, anonymous, and authenticated communication between users and service providers with practical performance.Comment: This is a preprint version of our paper presented in SAC'14, March 24-28, 2014, Gyeongju, Korea. ACMSAC 201

    Key-updatable public-key encryption with keyword search (Or: How to realize PEKS with efficient key updates for IoT environments)

    Get PDF
    Security and privacy are the key issues for the Internet of Things (IoT) systems. Especially, secure search is an important functionality for cooperation among users\u27 devices and non-trusted servers. Public-key encryption with keyword search (PEKS) enables us to search encrypted data and is expected to be used between a cloud server and users\u27 mobile devices or IoT devices. However, those mobile devices might be lost or stolen. For IoT devices, it might be difficult to store keys in a tamper-proof manner due to prohibitive costs. In this paper, we deal with such a key-exposure problem on PEKS and introduce the concept of PEKS with key-updating functionality, which we call key-updatable PEKS (KU-PEKS). Specifically, we propose two models of KU-PEKS: the key-evolution model and the key-insulation model. In the key-evolution model, a pair of public and secret keys can be updated if needed (e.g., the secret key is exposed). In the key-insulation model, the public key remains fixed while the secret key can be updated if needed. The former model makes a construction simple and more efficient than the latter. On the other hand, the latter model is preferable for practical use since a user never updates their public key. We show constructions in each model in a black-box manner. We also give implementation results on Raspberry Pi 3, which can be regarded as a reasonable platform of IoT devices

    Vacuum-Assisted Closure (VAC) for Bilateral Severe Ischemic Foot after Revascularization: A Patient Report

    Get PDF
    The Vacuum-Assisted Closure (VAC) Therapy (KCI, San Antonio, TX) is a unique system that helps promote wound healing. We report a case of severe ischemic foot in which VAC therapy markedly improved wound healing. A 73-year-old man underwent left axillopopliteal bypass and left 3rd, 4th and 5th digital amputations for gangrene. Although his amputation stumps were complicated with methicillin-resistant Staphylococcus aureus (MRSA) infection, the stumps were successfully healed by VAC. He also had gangrene in his right 1st toe, which could not healed by VAC alone, and we performed right femoropopliteal bypass and right 1st digital amputation. The stump with MRSA infection was also successfully healed by VAC. Histopathologic examination revealed a lot of microvessels in the increased granulation tissue

    FPGA and ASIC Implementations of the ηT\eta_T Pairing in Characteristic Three

    Get PDF
    Since their introduction in constructive cryptographic applications, pairings over (hyper)elliptic curves are at the heart of an ever increasing number of protocols. As they rely critically on efficient algorithms and implementations of pairing primitives, the study of hardware accelerators became an active research area. In this paper, we propose two coprocessors for the reduced ηT\eta_T pairing introduced by Barreto {\it et al.} as an alternative means of computing the Tate pairing on supersingular elliptic curves. We prototyped our architectures on FPGAs. According to our place-and-route results, our coprocessors compare favorably with other solutions described in the open literature. We also present the first ASIC implementation of the reduced ηT\eta_T pairing

    Divergent responses to peptidoglycans derived from different E. coli serotypes influence inflammatory outcome in trout, Oncorhynchus mykiss, macrophages

    Get PDF
    Background: Pathogen-associated molecular patterns (PAMPs) are structural components of pathogens such as lipopolysaccharide (LPS) and peptidoglycan (PGN) from bacterial cell walls. PAMP-recognition by the host results in an induction of defence-related genes and often the generation of an inflammatory response. We evaluated both the transcriptomic and inflammatory response in trout (O. mykiss) macrophages in primary cell culture stimulated with DAP-PGN (DAP; meso-diaminopimelic acid, PGN; peptidoglycan) from two strains of Escherichia coli (PGN-K12 and PGN-O111:B4) over time. Results: Transcript profiling was assessed using function-targeted cDNA microarray hybridisation (n = 36) and results show differential responses to both PGNs that are both time and treatment dependent. Wild type E. coli (K12) generated an increase in transcript number/diversity over time whereas PGN-O111:B4 stimulation resulted in a more specific and intense response. In line with this, Gene Ontology analysis (GO) highlights a specific transcriptomic remodelling for PGN-O111:B4 whereas results obtained for PGN-K12 show a high similarity to a generalised inflammatory priming response where multiple functional classes are related to ribosome biogenesis or cellular metabolism. Prostaglandin release was induced by both PGNs and macrophages were significantly more sensitive to PGN-O111:B4 as suggested from microarray data. Conclusion: Responses at the level of the transcriptome and the inflammatory outcome (prostaglandin synthesis) highlight the different sensitivity of the macrophage to slight differences (serotype) in peptidoglycan structure. Such divergent responses are likely to involve differential receptor sensitivity to ligands or indeed different receptor types. Such changes in biological response will likely reflect upon pathogenicity of certain serotypes and the development of disease

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Chronological Analysis of Source Code Reuse Impact on Android Application Security

    No full text

    Helping Johnny to Search: Usable Encrypted Search on Webmail System

    No full text
    corecore